
Application Note:QCI-AN041 QuickSilver Controls, Inc.
Date: 22 September 2008 www.QuickSilverControls.com

Property of QuickSilver Controls, Inc. Page 1 of 4 This document is subject to change without notice.
QuickControl® and QCI® are Registered Trademarks of QuickSilver Controls, Inc.
SilverLode™, SilverNugget™, SilverDust™, PVIA™, QuickSilver Controls™, and AntiHunt™ are trademarks of
QuickSilver Controls, Inc..

Visual C++ Serial Communication

Overview
This application demonstrates serial communications using various methods. This simple
program, initializes the COM port and sends a Move Relative, Time Based (MRT) command to
the attached QuickSilver Device. The device's response is received and displayed.

It is assumed the reader is familiar with Windows, Visual C++, QuickControl®, programming
QuickSilver products, and QuickSilver’s serial communication. For more information see:

• QCI-TD053 Serial Communications
• SilverLode User Manual

This document is meant to explain the setup and general design of the example. The details
concerning communicating with a QuickSilver device are left up to the documents mentioned
above and the source code comments.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Setup
This application demonstrates three different methods of communicating with a QuickSilver
device over an RS-232 serial port using Visual C++. They include:

• 8 Bit ASCII Protocol Using MSCOMM.OCX
• 8 Bit ASCII Protocol Using File I/O
• 9 Bit Binary Protocol Using File I/O

The following assumptions are made about the setup:

• The device has already been initialized (using QuickControl) and connected to COM 1.
• 8 Bit Protocol or 9 Bit Binary depending on example
• 57600 Baud Rate
• Unit ID of 16.

Application Note:QCI-AN041 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 2 of 4

Supplied Files

File/Folder Description
MSCommTest Source Code using Microsoft’s

MSCOMM.OCX
FileCommTest Source Code using file I/O (8 Bit ASCII)
FileCommTest 9 Bit Source Code using file I/O (9 Bit Binary)
MRT POL Source Code using a move command and

checks for completion
LRP POL Source Code using a load and run command

and checks for completion
LRP POL RRG Source Code using a load and run command,

checks for completion, and checks the data
of register 1

Application Overview
This application will demonstrate three different methods of serial communications
(transmission and reception of data) with a QuickSilver device over a serial port. The first
method is found in MSCommTest, which uses MSComm (Microsoft Communications
Controller-MSCOMM.OCX). The second and third method are found in FileCommTest and
FileCommTest 9 Bit and use the file I/O method which does not require the file
MSCOMM.OCX .

Both methods will perform the same function, which is verifying communications with the
QuickSilver device. Communications are tested by sending an Move Relative, Time Based
(MRT) command to the device and looking for an acknowledgment (ACK).

MSCommTest is more of an object oriented approach, but does not allow as much access to
the COM port which is why we do not provide an example of the 9 bit protocol using
MSCOMM.OCX. If you are only doing simple 8 Bit ASCII communications, we recommend
using the MSCommTest. For advanced users, we recommend the FileCommTest methods.

Dialog Box (All Examples)
The dialog box in all the examples is the same. Pressing the
‘Test’ button will send an MRT command.

Notes On Documentation
Since the Microsoft framework generates some of the code
for you, only those classes with QCI specific code and those
that are ActiveX Controls will be addressed.

Note: QCI specific code is tagged with the comment character “///QCI”. This allows the
programmer to quickly search the application for the “important” stuff.

Application Note:QCI-AN041 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 3 of 4

MSCommTest

CMSComm Class
MSComm or Microsoft Communications Controller is an ActiveX Control supplied by Microsoft.
The MSComm control provides serial through a serial port.

You can add this control to your project by

1. Selecting Project->Add to project->Components and Controls
2. Select ‘Registered ActiveX Controls’
3. Select ‘Microsoft Communications Controller, Version 6.0’
4. Click ‘Insert’
5. Click ‘OK’
6. Click ‘OK’ to confirm that a new class will be created for this control
7. Close the Components and Controls Gallery.

This inserts the Communications Controller into the dialog editor’s toolbox (appearing as a
yellow telephone), which you can now drag onto your dialog box to make it part of your project.
All of the functions of MSComm are now part of your project.

CMSCommTestDlg Class
This is the dialog box class. It contains the code that enables us to communicate with the
device.

When the ‘Test’ button is pressed, MSCommTestDlg::OnTest() sets up the COM Port and
sends out an MRT command to the device. OnTest() then looks for a response and displays it
in a Message Box.

FileCommTest

CFileCommTestDlg
This is the dialog box class. It contains the code that enables us to communicate with the
device.

CFileCommTestDlg::OnInitDialog() calls CFileCommTestDlg::ConfigCOM to configure COM1.

When the ‘Test’ button is pressed, CFileCommTestDlg::OnTest() puts the MRT command into
strCmd and sends it to CFileCommTestDlg::SendCommand().

SendCommand() first makes sure we have a valid window and our COM port is enabled. The
command in strCmd is written to the COM port by the command WriteFile. SendCommand()
then looks to receive an Acknowledgement (ACK) from the device using ReadFile.

FileCommTest 9 Bit

CFileCommTestDlg
This is the dialog box class. It contains the code that enables us to communicate with the
device.

Application Note:QCI-AN041 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 4 of 4

CFileCommTestDlg::OnInitDialog() calls CFileCommTestDlg::ConfigCOM to configure COM1.

When the ‘Test’ button is pressed, CFileCommTestDlg::OnTest() puts the MRT command into
a buffer. Mark Parity is set for the COM port and the first byte is sent. This is how we set the 9th
bit to signify an address byte. After the first byte (the address byte) is sent out, parity is set to
Space Parity and the rest of the buffer is sent out.

To detect address bytes from the device, we enable the COM port’s parity error reporting.
CFileCommTestDlg::RxByte() reads in one byte at a time flagging any byte with the 9th bit set
(parity error).

MRT POL

CMSCommTestDlg Class
This is the dialog box class. It contains the code that enables us to communicate with the
device.

When the ‘Test’ button is pressed, MSCommTestDlg::OnTest() sets up the COM Port and
sends out an MRT command to the device. OnTest() then looks for a returned completion bit
before displaying the complete returned data.

LRP POL

CMSCommTestDlg Class
This is the dialog box class. It contains the code that enables us to communicate with the
device.

When the ‘Test’ button is pressed, MSCommTestDlg::OnTest() sets up the COM Port and
sends out an LRP command to the device. OnTest() then looks for a returned completion bit
before displaying the complete returned data.

LRP POL RRG

CMSCommTestDlg Class
This is the dialog box class. It
contains the code that enables
us to communicate with the
device.

When the ‘Test’ button is pressed, MSCommTestDlg::OnTest() sets up the COM Port and
sends out an LRP command to the device. OnTest() then looks for a returned completion bit
before displaying the complete returned data. Once the program is complete, OnTest() sends
out an RRG command, which returns the information stored in register 1.

